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Abstract 

A non-asymptotically free gauge theory with many couplings is shown to 

exhibit a “trapping” mechanism, in the sense that, as soon aa one (or more) of 

the couplings grows large, the rest of the couplings will follow suit. This mech- 

anism can help achieve a non-perturbative ‘unification” of the standard model 

k la Maiani - Parisi - Petronzio at relatively Yaw* energies (TeV scales). Two 

scenarios are given, one of which is just the standard SU(3), x sum x U(l), 

and the other one involves, in addition, Technicolor interactions. Predictions 

for sin’ B,(AF = 250 GeV) and am are presented for both scenarios. Both 

scenarios make use of SU(2)L-singlet heavy fermions which carry charge, color 

(Model I) and technicolor (Model II). Some experiniental implications are also 

discussed. 
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Up to what scale(s) can one trust perturbative calculations in the standard 

model? Is there a cutoff scale, and if so, can it be much smaller than the Planck 

mass? What would be its implications ? These are the questions we would like to 

address in this note. 

Let us briefly recall the conditions under which a perturbation expansion ceases 

to be valid. From the renormalization group equation $ = p(o), where t = .!n$ 

and ~1 is some subtraction point, one obtains t = J$$‘l &. If the theory is 

non-asymptotically free, p(o) > 0 ( no fixed points), there is a value oft for which 

(I + co, namely t, = J-$1 $& < co. The perturbation expansion breaks down for 

t > t,. If perturbation theory is to be valid for all energy scales, it follows that 

o(p) = 0, in which case t, = co. The value a(w) = 0 is the infrared (IR) stable 

fixed point. If a(p) is small, but not equal to zero, i.e., it is near the IR Sxed 

point, there is a finite physical cutoff A(& = 1,s) beyond which non-perturbative 

methods will have to be employed. The situation is different for asymptotically free 

theories where no such cutoff is present because o(A) + 0 as A + oo. 

Exploiting the above facts, Maiani, Parisi and Petronzio’ (MPP) have proposed 

an interestingschemein which the standardSU(3),xSU(2)L~x(l), model becomes 

non-asymptotically free above AF N 250 GeV. Since ai # 0,i = 1,2,3, the 

cutoff scale mentioned earlier is finite. The original proposal is to identify that 

scale with Mp N 10rs GeV. In subsequent works by Cabibbo and Farrar*, and by 

Grunberg3, the cutoff is found to be approximately 10” - 10” GeV. The couplings 

at that cutoff are large and of the same order, though not necessarily equal. It 

was found that the low-energy couplings ai are insensitive to how large the 

high-energy couplings are, and depend primarily on the particle content of the 

theory. Predictions for sin’ &,,(A F ) and aa were given with the constraint that 

the number of families (some of them have masses of O(AF)) is between 8 and 10. 

No unifying gauge group was necessary in this scheme. 

In the MPP scenario’, a desert is also assumed to exist between 250 GeV and 

w 10’s GeV. Although, it is still a matter of speculation, there is a distinct possi- 

bility that structures can exist at intermediate energies. For instance, Technicolor 

interactions’ may be responsible for a dynamical breakdown of SU(2)r. x U(l), and 

they would certainly yield new physics in the TeV region. In fact, various works 

have pointed out the possibility that the standard model with Higgs scalars can 
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only be an effective theory up to - 1 TeV. 

Since there is a possibility that there is no desert after all, one may ask whether 

or not the cutoff scale in the gauge sector of the standard model could, in fact, be 

much lower than the value obtained by Refs. (1,2,3). In fact, could it be in the TeV 

region? Can one still predict sin’ &,(AF) then? It is claimed in this note that this 

possibility exists with the help of a phenomenon called the trapping mechanism. 

It is shown below that, for a non-asymptotically free gauge theory with many 

couplings, as soon as one (or more) of the couplings grows large the rest of the 

couplings will follow suit because of the influence of the first type(s) on the others 

through the effects of fermion loops. Let us briefly recall what the situation was with 

just SU(3), x SU(2)r. x U(l),. There, it was found [1,2,3] that, as long as one is 

dealing with standard quark and lepton families, in the process of lowering the non- 

perturbative unification scale (by increasing the number of families), sin* e,(A,) 

increases and as decreases. Consistency with experiment requires that M - 

1016 - lOi GeV with the number of families situated between 8 and 10. It is 

impossible to make M ,rZ O(lOO0 TeV) in the usual MPP scenario. 

In the first version of the two scenarios presented here, the MPP picture is 

modified by adding a large number of colored, SU(2)r,-singlet charged fermions of 

mass of O(Ap) so that the SU(3), coupling constant becomes large at an intermediate 

scale (is the TeV region). The trapping mechanism will force the sum and U(l), 

couplings to grow strong at approximately the same scale. It is then seen that 

sin’ I, is rather insensitive to the value of that scale and depends only on the 

number of these new fermions. aa is also computed. 

The second version deals with a gauge group Gro x SU(3), x sum x U(l), 

where Gro is the Technicolor group. Here the extra heavy families encountered in 
the MPP scenario are interpreted as Technifermions. One advantage of this picture 

is the fact that one can do away with fundamental scalars and avoid the natural- 

ness and triviality problems. At the Technicolor scale A=(= 1 TeV), a condensate 

is formed when ore = g;?,/4?r = s/3&(R), w h ere R is the representation of Tech- 
nifermions. This is the input value which can be computed. Above AT, Gro is 

asymptotically free and Q~C decreases. We now introduce a set of SU(2)L-singlet, 

colored, charged Technifermions of mass MI > Ar. It will be seen that this set is 

not too large (- 10) and also one can easily form a gauge-invariant mass term for 
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these fermions (we will speculate on the possible origin of these masses at the end of 

this note). For E > MI, both Gro and SU(3) e couplings begin to grow and become 

large at a scale M of 0(200-300 TeVs). They, in turn, trap the sum and U(l), 

couplings and the same scenario ss the one described above is repeated. Notice 
that for E > AT,SU(~)L (and, of course, U(l),) is non-asymptotically free. The 

value of M of 0(200-300 TeVs) hints at an extended Technicolor picture’. Again, 

sin* B,(Ap) and (xs(A~) can be determined. To,show the trapping behavior, we shall 
first discuss an example of two arbitrary gauge groups Gi and Gr. 

Let two gauge groups Gr and Gr be vector-like (a prototype of color and techni- 

color interactions) and chiral (e.g., sum) respectively. In a more realistic theory, 

proper care is required so that Gr is anomaly free. In this note, fermions are 

chosen to transform as fundamental representations of G1 x Gr (a generalization to 

higher dimensional representations is straightforward). Let us denote by fi, i = 1,2, 

the fundamental representations and by d(fi) th eir respective dimensions. For the 

purpose of illustration, we take the following set of left and right-handed fermion 

fields: ln(f~, ~z)L, nd(fi)(fi,l)~,ii(l,f~)~). In addition, we can add another set 

which CM be either {%(f~,f&,, n,(f~,h)R) or (%(f~,l)~, +L(~I,~)R) or both. 

The reason we want this second set of fermions is the fact that they can have a 

large explicit mass term of the order of MI > AT without breaking Gi x Gr gauge 

invariance. The need for those fermions will be made clear below. 

With ai = gj/4rr, i = 1,2, the renormalization group equations are now written 

as 

2 = biUf + 5 CijCYiClj + O(CYf), 
j=l 

(11 

where bi and cij are the one- and two-loop coefficients respectively, and t s 

h(p’/M*). Explicitly, one has’ 

bl = & {-llCz (G) + 2d (12) n + AI}, 

bz = & {---1lCz (Gz) + d(h) n f ii + AZ}, 

c11=&{r 1oc 2( 1) G + f3C2 (h)] d(h) n + An - 34 [c, (Gl)]‘} , 

~1 = & {Cz (fi) d(A) n + An}, 



where 
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“J = 

0 for AT < E < Ml , 

(2d (f ) 2 n, or 2ii,}, {d (fl) n, or zero } for E > MI, 
(3a) 

for AT < E < MI 

A ~[lOC~~l)+6C~(fi)](d(~~)n,br~,)}, WI 

{G (fl) d (fl) n, or zero } for E > MI, 

and where only coefficients of interest are exhibited. Here Cr(Gi) and Cr(fi), i = 

1,2, are the Casimir invariants of the adjoint and fundamental representations re- 

spectively. In what follows, it is assumed that, for the energy range considered, 

ai > ar and, at the two-loop level, one can neglect clra~ar and c& as compared 

with elia: and crro& respectively. Also, we are neglecting mass threshold effects 

here. 

Depending on the model considered, n and ii can also be chosen so that bl, cl1 < 0 

and bz > 0 for AT 5 E < MI. The assumption bz > 0 is, in general, not necessary 

since cri~l~or dominates over bzai for large 0~1. For E > MI, n, or ii, can be chosen 

so that bl,cll > 0. The coefficient err is always positive. The picture which emerges 

is the following one: For AT < E < MI, G1 is asymptotically free and al decreases 

with increasing E, while for E > MI, Gl becomes non-asymptotically free and al 

again increases. Also, for E > AT, Gr is non-asymptotically free. 

Let us solve Eq. (1) for the interval Ml to M. For al, one has to use the full 

two-loop equation to obtain 

where the limit a;‘(M) + 0 has been taken in (4), with 6, and ?il being the one- 

and two-loop coefficients for MI S E .S M. Notice that what we mean by the 

coupling becoming large at M is really the assumption that a,‘(M) < cr;‘(M~). 

Here ~1 = cq(M~). From Eq. (4), one can determine M for a given MI and ~1. 

Eq. (4) will later be used in the computation of as. Examples given below 

show that typically M/MI 2 O(10). A s f or or, the one-loop value is given by 

@z(M) = az(W)/(l - ~@f,)W&). It will also be seen below that, because 

M/M, 2 O(lO), the quantity a2(M~)bzh~ is much less than one and the one-loop 

value hr (M) k az(M~) is small because cq(M,) is assumed to be small. As it turns 
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out, at the two-loop level, the situation changes drastically because the effects of 

Gl on Gr will start to show up there. 

Let us define z z err%. Up to two loops, the solution to Eq. (1) for ai is given 

valid for al(z) < 1 and al(O) > l(Q’ = M2). H ere bl,cll > 0 for E > MI. Using 

Eq. (5), the R.G. equation for cxr now reads 

da -=- 
dz 

&+~-?!.$! 

Integrating Eq. (6) from Mr to some scale M’, we obtain 

M’2 
a;’ (MI) = a;’ (M’) + b&e--- MI +f(M,M’), 

(6) 

(7) 

I(M,M’)=~~n[en(~),Ln(~)] 

+y[-(Ln+)+l),&r($)+(e,fn($)+l)/!n($)]. (8) 

From Eq. (7), one obtains 

By examining more closely Eq. (9), one discovers that, as M’ approaches M, the 

function f(M, M’) becomes large and ar(Mr)f(M, M’ + M) + 1 which, in turn, 

implies that az(M’ + M) N O(1) or larger (strong couplings). Notice that f(M, M’) 

is only logarithmically dependent on M’ and hence a precise value is not needed as 

long as it is close to M. 

The above discussion illustrates a general phenomenon involving a theory with 

many couplings, at least one of which grows strong, at some scale M. Intuitively 

speaking, the fact that one of the couplings becomes strong indeed indicates that 

there is an enhancement of the fermionic contributions to the p-functions of the 

other couplings. It is similar to (but not the same as) adding more fermions to the 

one-loop coefficients bi. This is what we call the ‘trapping” mechanism. 
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The above analysis is carried out up to the twwloop level and one may won- 

der about the importance of three loops and higher ones. First, it is well-known 

that the 6rst two terms in the p-function are renormalization-scheme independent 

and, therefore, have physical significance. Beyond two loops, we have to rely 

on a particular renormalization scheme. For instance, using the MS scheme, 

the authors of Ref. (8) have calculated p(o) up to three loops for an arbitrary 

Yang-Mills theory. Take the example of QCD with nf flavors. Ref. (8) gives 

&~(a,) = z(-ll+ $1) + &(-lo2 + ynr) + a(-? + Fnr - zn;). For 

nf = 18 so that b = & > 0, it is seen that p qcn > 0. In fact, the coefficient of 

the third term is positive as long ss nf 5 40. This simple example shows that even 

within a particular renormalization scheme such as the MS scheme, it is possible to 

make p > 0, up to three loops, in order for the enhancement effect discussed earlier 

to be additive. We conjecture that the induced strong effect found at two loops 

hold to all orders with perhaps an additional constraint on n,. A more detailed 

discussion of this point for the problem at hand will be presented in a separate 

paper. Let us give a few concrete examples. 

From here on, we will assume that at M’ = O(M), all couplings are of the same 
order and that a;l(M’) a a;‘(Ap) for i = 1,2,3. It is equivalent to the assump- 

tion that *(Ml) are large enough so that the low energy couplings are relatively 

insensitive to ai and one would get predictions rather then bounds on ai( 

The trapping mechanism is illustrated by two models. Model I is de- 

scribed by SU(3), x sum x U(l),. There are n families of conventional 

fermions {(3,2, $)n, (3,1, i)R, (3,1,-$)R, (1,2, -i), (l,l, -l)n},n. fermions of the 

type {(3,1, y,)~, (3,1, y,)n}. In addition, we can have an arbitrary number of Higgs 

doublets. In the final results given below, we shall explain the origin of this choice. 

The fermions $i,n = (3,1, &)n,n 88 well as parts of the conventional families will 

be given a msss of 0(Ah~). This procedure is analogous to that employed by Refs. 

(1,2,3). We only explore the mass range of O(AF) because it is interesting phe- 

nomenologically. 

Model II is described by sU(4)r.o. x SU(3)#, x SU(2)r. x U(l),. For 

simplicity, we choose to have three families of conventional technicolor- 

singlet fermions (a generalization to a larger number is straightforward). 

There are pq Riggs fields here. We have one family of Technifermions 
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ h -bY 

with Model I, we now include N, fermions of the type {(4,3,1, y,)~, (4,3,1, y,)R}. 

These latter fermions will be chosen to have a gauge-invariant mass term of the 

form M,$ls@ + h.c. This is the mass scale MI mentioned above. 

It turns out that, for both models tiSsTS will have to be SU(2)r. singlets otherwise 

sina 0, becomes too large. 

Let us tirst concentrate on Model II because the physics which comes out is 

quite interesting. To determine as(Ap), the full too-loop equation is used for the 

energy range Are S E 5 M. For AF S E .S Arc, the one-loop result a;‘(AF) = 

G'(~c) - Zen(e) is used since the two-loop term csoi is small compared 

with the one-loop term in that region. The following coefficients are needed: For 

ATC ;5 E ZZ MI, one has bra = $,bz = -&,cT~ = -$,c, = $$-$ whereas 

for Ml .S E g M, one has 6~ = (-28 + 6N,)/12x,& = (-5 + 8N,)/12n,ETc = 

(615N.-536)/192~f*,~~ = (152N,+226)/48 rr*. In addition to Eq. (4), the following 

one is used 

+ ien [(b + cw) / (a.3 + ~a~)] , (JO) 

where c and b are the coefficients for Are d E S MI and ae = ai(ATo),i = TC,3. 

The results are listed in Table 1 for N, = 8 and 10. As we shall see below, N, is 

constrained to be 8 5 N, 5 10 in order for sinrB,(A~) to come out right. From 

Table 1, one notices that M/M, is at most of O(20). Typically, M/Ml s O(10) 

and M -100 TeV - 500 TeV while MI - 20 TeV - 40 TeV. For that msss range 

0.09 S as(Ap) S 0.12. In obtaining these results, the following inputs are used: 

AF N 250 GeV, ATC II 1 TeV, o~o(Aro) = s/3Cr(fro) = 8x/45 = 0.56. 

To compute sin’ 8,, we need to know the coefficients of the following p-functions: 

PTC = ~Tc&~Tc +a& +cT&~~~+-*~,Ps = &a: +c& +~~T&.ITc +..-,pz = 

(bra + ~~(33 + CZT(XTC)O: + a** ,pr = (bl + ~13~3 + C~TCXTC)CX~ + e-e. The following 

relevant coefficients are listed: c ‘i-3 = (2 + N,)/27?, %?‘3T = (45(2 + N,)}/48x2, c2s = 

7/47r2,c2r = 30/16rr*,cis = {154(1+ !#y:N,)}/72r2,clr = {50(1+ $J:N.)}/~~K*. / 
For as cz ore and with the N, - 8 - 10, one can ignore crs and 2s~ as compared 

with cro and cs. Furthermore, since the function f(M, M’) defined by Eq. (8) is 

of the form fi(M, M’) = - xj+,Tc ~&?n&z~ - &=s,re (y) (&&z~/&L~) + 

gi(M, MI), with i = 1,2, it is seen that, as M’ * M, the second term dominates. 
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We obtain (i = 1,2) 

,j,iFx fi (J4 M’l = j=FTc (7) IKL 

pq = p&+n$l. 

(114 

Neglecting cr<i(M’), one has ol,t(A~) 2: &,ren$ + b&n$ + fl,2(.h4, M’) where, in 

the limit M’ + M, the first two terms are neglizible compared with fl,r(M, M’). A 

word of caution is needed here. Since these heavy fermions also have U(1), quantum 

numbers, one may wonder whether or not al(M) can already be large at one loop. 

The one-loop result gives al(M) = ol(Mr)/[l - cq(M~)(y +48yfN,)h (&) /&I. 

and for ly,l = 5 (smallest unit of charge known), N, = 10,al(M,) - l/100, it turns 

out that CY~-“‘~(M) N 1.2crl(Mr). S o even for al, one can safely ignore the first 
two terms in I;‘. The final result is, for i = 1,2, 

We obtain 

(W 

tad B, (AF) = (11 (AF) 

ff2 (AF)’ 

0.818 = 
1+ (144y:N,/77) [(l + 1.46R1) / (1 + 1.07RlRz)], (.13) 

with RI = 4 [ I~F$]~ [ :~~~+~~~] , RZ = $$$$&&. One also has 

IKI = XL. tAp) iizz j=Ec (cijcj/6~> . 
3 B (J4) 

Using I..,,,. = l/128, one can determine the magnitude of IKI. 

From Eq. (14), one notices two things. First, in the limit y, = 0, one has 

tan*B,(AF) = 0.823 corresponding to sin*&(AF) ‘u 0.45, for N, = 10. Also, 

siri’& -+ 0.39 for N, -+ 00. This is clearly an unacceptable value and that 

is the reason why we need those heavy fermions to be charged. Secondly, if we 

take Iy.1 = i which is the smallest unit of charge, we have the following predictions 
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which are independent of M’ 

sin* &,(AF) = 0.248, 0.232, 0.218 ,0.205 ,0.154 for N, = 7,8,9,10,11, (J5) 

which implies that 8 5 N, 5 10. Also, from Eq. (16), if we take N, = 10, 

we obtain II(I N 37.4 which implies, for all practical purposes, M’ u M, because a 

precise value is not needed because sin* 0, is independent of IRI. Since the SU(2)&- 

singlet fermions have a mass which is not coming from the electroweak breaking, 

they decouple for E < MI and will not affect the phenomenological p-parameter 

although they have U(l), quantum numbers. 

Model I is particularly simple and also interesting. One has, for E 2 AF, ba = 

(-33,n + 2n,)/l2n,cs = (76n + 38n. - 306)/48n*,c*s = n/47r*,ci* = (227~ + 

792y:n,/11)/7%r2. Here, tan* &(A,) = ca3/c13, i.e., 

tMI* e&p) = 
9n 

lln + 36y:n, 

The twoloop equation is again used to determine I*. The results are sum- 

marized in Table 2. The assumption Iy,l = i is made here. From Eq. (18), one 

notices the following amusing coincidence, namely for n = n,, one has sin* &, = 2, 

independently of n or n.. However, this value of sin* 0, is evaluated at AF = 250 

GeV and should not be confused with the same GUT value which is valid at ho = 

10” GeV. Another special value is obtained when n, = 5n giving ain’ti, = 

9/40 = 0.225. In fact, if n. is a multiple of n, i.e., n, = Xn then 4 5 X 5 6 giving 

0.25 1 sin* &(A,) 2 0.205. 

As for os(A~), it turns out that the more one increases n and n,, the more 

M decreases. For instance, if n = 11 and n. = 50(sin*6’, N 0.236), then one 

obtains og(A~) = 0.086 for M II 1 TeV (and decreases for M > 1 TeV). This 

value (1 TeV) is dangerously close to AF. For this reason, plausible bounds on 

n and n, are 3 5 n 5 11 and 15 5 n, 5 50. The lower bound on n. comes 

from sin* 8,. Table 2 deals with three particular cases, all obeying the relationship 

n, = 5n(sin*e, = 0.225), for n = 3,7,8. The case n = 3 (standard families) and 

n, = 15 is particularly interesting since the only extra heavy fermions are the 

SU(2)L-singlet charged, colored fermions of mass - O(AF). These fermions should 

give rise to a spectacular increase in the R-ratio (in the event of a construction of an 

e+e- machine with C.M. energy > 500 GeV). In fact, R = xi Qf = $z + tn. = 10 
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for n = 3,n, = 15. Note that the case n = 3 and n. = 15 is also most attractive 

because the kparameter is negligibly affected by the SU(2)~-singlet fermions even 

if they have mass of O(AF). The induced shift in the 2 boson msss8 is roughly 

proportional to g(%), x &I,&% cz O(lO-‘) for ]y.] = 4 and n, = 15. For 

n = 7 or 8, it is assumed that the heavy standard families have msss of O(A,) and, 

in order for the p-parameter not to be much affected, the new doublets will have 

to be almost degenerate, a rather unusual situation. 

The “trapping” mechanism pointed out in this note is a way to lower the domain 

of validity of perturbation theory in the standard model beyond which new physics 

will certainly enter. The point here is the possibility that it happens, not near the 

Planck scale, but at intermediate energies. By “new”, we mean new interactions 

and not just new particles. The prediction for sin* tiv,(A~) is preserved and is not 

unique to specific grand unified theories. 

The last point we would like to point out is the possibility of identifying the 

non-perturbative “unification” scale M in Model II with the extended Technicolor 

scale. One might then have a tumbling scenario in which, perhaps some gauge group 

would tumble down to Gro x SU(3), x SU(2) n X U(l),. It is interesting to see if 

such scenario can occur. It could perhaps explain the origin of the heavy fermion 

4. and their mssses. 

The ideas of unification with Technicolor and the sum singlet fermions were 

developed in collaboration with Georges Grunberg. A joint paper dealing with a 

non-perturbative unification with Technicolor along the line of Refs. [1,2,3] without 

the trapping mechanism is in preparation. 

I would lie to thank Bill Bardeen, Georges Grunberg and Manfred Lindner 

for stimulating discussions. This work is supported in part by the U.S. National 

Science Foundation under Grant No. PHY-8341186. 
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Table 1 

14c 

15 

72 

241 

20 

114 

517 

30 

218 

879 

t--t 

40 

343 

- 
1 

0.129 

0.105 

0.118 

0.095 

0.105 

0.087 
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Table 2 
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Table Captions 

Table 1: Predictions for Model II. The upper (lower) value in each now corre- 

sponds to N, = S(10) for sin’ f?,(A.v) = 0.232 and 0.205 respectively. 

Table 2: Predictions for Model I corresponding to the case n. = 572 with sin’ B,(AF) = 

0.225. 
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